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1. Consider the periodic function f : R → R with period T > 0 such that, on the interval [0, T ),
it takes the form

f(x) =

{
+1, T

2
⩽ x < T,

−1, 0 ⩽ x < T
2
.

Compute the Fourier series of f .

2. Let us consider an integral equation of the following form:

u(t) = g(t) +

� t

0

k(t− s)u(s) ds.

In the above, k, g : [0,+∞) → R are given piecewise continuous functions and we are solving
for a function u : [0,+∞) → R. Remark: The above equation is a special case of a Volterra
equation of second kind. These equations arise naturally in models dynamic systems where
past values of a variable in�uence the current value with a weight determined by the kernel
function k.

(a) Assuming that both g and k are such so that their Laplace transform is well-de�ned in
some half-space of the form {z : Re(z) > a}, �nd an expression for the Laplace transform
of u.

(b) Find u in the case when g(t) = t and k(t) = e−t.

3. Let f : R→ R be an odd, L-periodic function. Using Fourier series, �nd an odd and L-periodic
solution u of the biharmonic equation

d4u

dx4
= f.

4. Consider the following initial state on the interval I = [0, 2L]:

u0(x) =

{
x, 0 ⩽ x ⩽ L,

2L− x, L ⩽ x ⩽ 2L.

Find the solution of the wave equation

∂2u

∂t2
=

∂2u

∂x2

with initial conditions

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = 0

and Dirichlet boundary conditions at x = 0, 2L:

u(0, t) = 0, u(2L, t) = 0.

Hint: First extend u, u0 as odd periodic functions in the variable x ∈ R; what should be the the
period for this extension?
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5. For κ > 0, let us consider the heat equation

∂u

∂t
(x, t) = κ

∂2u

∂x2
(x, t), t > 0x ∈ R. (1)

(a) Show that, for any solution u with ∂u
∂x

→ 0 as x → ±+∞ and any t2 ⩾ t1, we have

� +∞

−∞
u(x, t1) dx =

� +∞

−∞
u(x, t2) dx.

(Hint: Compute the derivative ∂t

� +∞

−∞
u(x, t) dx.)

(b) Compute the solution of (1) with initial data

u(x, 0) =
1√
4πτκ

e−
x2

4τκ

for some given τ > 0. Deduce, in particular, that the heat evolution of a Gaussian function
is a Gaussian function at any �xed time. (Hint: You will need to recall what is the Fourier
transform of a Gaussian function, see Ex. 8.3)

6. So far, we have only considered cases of homogeneous boundary conditions (namely boundary
conditions which are invariant if we replace the unknown function u(x, t) with λ · u(x, t); for
example, Dirichlet conditions u(x0, t) = 0 or Neumann conditions ∂xu(x0, t) = 0). Let us now
consider the question of how to handle inhomogeneous boundary conditions.

To this end, let us consider the following inhomogeneous initial-boundary value problem for
the heat equation: 

∂u
∂t
(x, t)− ∂2u

∂x2 (x, t) = f(x, t) for x ∈ (0, 1), t > 0,

u(x, 0) = u0(x),

u(0, t) = g0(t), u(1, t) = g1(t), for t > 0,

where f : (0, 1) × (0,+∞) → R, u0 : (0, 1) → R and g0, g1 : [0,+∞) → R are continuous
functions.

De�ning
a(x, t) = g0(t) · (1− x) + g1(t) · x,

show that, if
w(x, t)

.
= u(x, t)− a(x, t),

then w solves a heat equation with source term f(x, t)− ∂a
∂t
(x, t) + ∂2a

∂x2 (x, t) and homogeneous
(in fact, Dirichlet) boundary conditions at x = 0, 1.
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